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Abstract
In zeroth-order optimization, we are concerned with optimizing some objective

function f when we only have access to it via black-box queries i.e., we are lim-
ited to function evaluations alone. Zeroth-order optimization is prevalent in several
settings, including computer science, medicine, material science, and chemistry. In
machine learning, for instance, problems such as hyperparameter tuning and neural
architecture search can be posed as zeroth-order optimization problems.

Over the years, numerous algorithms have been proposed for performing zeroth-
order optimization. However, existing techniques exhibit one or more of the fol-
lowing drawbacks: (1) they make restrictive structural assumptions about f which
rarely hold in practice, (2) they are computationally expensive and do not scale well
to high-dimensional problems, and/or (3) they make too many queries to the zeroth-
order oracle.

Neural networks are beneficial in zeroth-order optimization as they can arbitrar-
ily approximate any continuous function and be extended to a variety of domains
with ease. Towards this end, we propose a simple yet principled greedy algorithm
leveraging the power of neural networks (which fits a neural network to the ob-
served data and uses the learned network as the acquisition function). Our goal with
this algorithm is to simulate Bayesian optimization techniques like Gaussian pro-
cesses with Thompson sampling while avoiding (1) the high complexity issues of
non-parametric methods, and (2) the task of defining a suitable kernel. We study our
technique empirically and find that it outperforms Gaussian processes with expected
improvement in high dimensional settings (with respect to simple regret). Finally,
we provide theoretical insights as to why our algorithm works so well and outline
future directions of interest.
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Chapter 1

Introduction

Let us consider the following problem: suppose we want to minimize (or maximize) some func-
tion within the bounds of a provided domain. A reasonable initial thought could be to use gradi-
ent information of this objective, employing ‘first-order’ techniques like gradient descent or its
many variants. An alternative could be to utilize optimization algorithms like Newton-Raphson’s
method that relies on the Hessian i.e., ‘second-order’ details about the underlying function.

However, what if we do not have access to either piece of information? What if our function
of interest is a black-box that we can only interact with via point queries? This is the paradigm
within which zeroth-order optimization techniques operate.

Zeroth-order optimization is an important problem with applications in a number of settings in-
cluding computer science, material science [1], medicine [2], chemistry [3], and biology [4]. For
instance, in machine learning, zeroth-order optimization techniques are often used for hyperpa-
rameter tuning [5] and neural architecture search [6].

Zeroth-order optimization problems also appear in robust machine learning – the setting could
be such that an adversary attempts to introduce imperceptible changes (or perturbations) to the
inputs of a neural network with the goal of making the network misclassify them [7, 8]. Defend-
ing against such adversarial attacks often requires the use of zeroth-order optimization techniques
which can efficiently identify the worst possible perturbation for any given example. These worst
perturbations are subsequently used to train an adversarially-robust neural network [9].

Zeroth-order optimization has also been proven to be helpful for model interpretability. What
makes this particularly interesting is that assuming a black-box setting affords a model-agnostic
method for providing explanations. In a structured data regime, it has been shown that class
probabilities for a desired input can alone be used to provide contrastive explanations: ones
which not only convey which features are minimally sufficient to justify the predicted class of
a particular input, but also which features should be minimally necessarily absent (as per some
determined threshold) to maintain the original classification. Hence, techniques like MACEM
only rely on a classification model providing class probabilities for the desired input [10].

Zeroth-order optimization problems appear in other engineering disciplines as well. The tech-
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niques used to solve them could be used in engineering design to help expedite the search for
promising designs [11]. They also have applications in differential privacy, where we may in-
tentionally want to hide first-order information while still trying to minimize some regularized
empirical risk function [12, 13]. More recently, zeroth-order optimization has even been used to
design better culinary recipes [14]!

Due to its widespread prevalence, zeroth-order optimization has been a constant subject of study
in various fields. Over the years, numerous techniques have been developed for solving this prob-
lem. At a high level, these algorithms can be classified into two broad categories: model-based
and model-free techniques. Model-based techniques, as the name suggests, aim to construct a
good surrogate model for the unknown function and rely on this model in order to compute a
global optimum. On the other hand, model-free techniques do not rely on such approximations
– rather, they perform random walks through the search space. Popular model-free zeroth-order
optimization techniques include simulated annealing [15], genetic and evolutionary algorithms
[16, 17], consensus-based optimization [18], tabu search methods [19, 20], and particle swarm
techniques [21].

In this work, our focus is on model-based techniques as they typically make fewer queries to
the black-box oracle relative to model-free techniques. Algorithms that make fewer queries are
especially useful in scenarios where calls to the zeroth-order oracle are very expensive – such as
exploring automotive designs based on simulations that may take from hours to days each before
completion [22].

Within the class of model-based techniques, there are two major sub-categories. One set of
approaches impose structural assumptions on the unknown objective function, with the hope of
making the zeroth-order optimization more manageable in this way. For example, one could
assume that the black-box function is linear [23, 24]. Some works assume that the function is
convex [25, 26], some presume strong convexity [27], while others assume that the function is
both convex and smooth [28, 29].

The other group of approaches do not make any assumptions about the structure of the under-
lying function, or minimal ones like smoothness in that the payoff function satisfies Lipschitz
continuity [30, 31]. Some rely on Bayesian optimization mechanisms like Gaussian processes
[32] – an approach that has been extensively scrutinized in the past few years.

Both of the aforementioned categories of zeroth-order optimization techniques have their pros
and cons. The structural assumptions made by the former class of techniques do not often hold
in practice, while the latter approaches have high sample complexity. Neural networks can get
the best of both worlds. Here, the assumption is that the unknown function can be modeled
using a neural network. While this may seem like a structural assumption at first glance, it
is a reasonable one to make given that neural networks are ‘almost’ non-parametric and have
been shown to have the power to arbitrarily approximate any continuous function [33]. At the
same time, they do not face the high sample complexity issues of non-parametric methods like
Gaussian processes [34, 35]. In addition, using neural networks avails two other advantages:

• Techniques based on neural networks can easily be extended to domains such as computer
vision, natural language processing, and computational biology, where we have neural ar-
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chitectures which can encode priors as per the domain (for instance, convolutional neural
networks encode priors that are based on the functioning of the human visual cortex). More
broadly, it is easy to incorporate inductive biases into neural networks. Moreover, neural
networks provide us the flexibility to incorporate a wide variety of constraints, which may
serve as data augmentation techniques [36]. Consequently, neural network-based algo-
rithms can have lower sample complexity compared to classical non-parametric techniques
like Gaussian processes.

• Deep learning frameworks like PyTorch and Tensorflow allow for efficient implementation
of neural networks and can overcome the computational barrier otherwise associated with
the implementation of Gaussian processes.

A number of recent works have attempted to develop neural network-based algorithms for zeroth-
order optimization. In general, they try to extend the classic Upper Confidence Bound and
Thompson sampling approaches to neural networks (see chapter 3 for more details on these
particular algorithms). The downsides of these techniques are that they either require poste-
rior sampling or the establishment of confidence bands for predictions made by neural networks
- which are often non-trivial and computationally expensive to perform. As a result, existing
approaches resort to heuristics which are not well studied [37].

In this work, we consider the problem of zeroth-order optimization in both the noiseless (where
we have access to exact function evaluations) and noisy (where results from oracle queries are
assumed to contain some Gaussian noise) settings. Our main contribution here is to develop a
greedy algorithm and show that it provides good empirical performance when compared to base-
lines such as Gaussian processes (which are often touted as the ‘gold standard’ for zeroth-order
optimization). We also present some theoretical insights towards explaining why our seemingly
simple technique appears to perform as well as it does. Our empirical and theoretical results sug-
gest that complex algorithms relying on Upper Confidence Bound or Thompson sampling are
unnecessary for general purposes. Moreover, they imply that there is a need for more adaptive
measures of complexity for zeroth-order optimization, as there appears to be a mismatch between
what is expected based on theoretical principles versus what is witnessed in practice.

The thesis is structured as follows: in chapter 2, we formally introduce the problem at hand.
In chapter 3, we present necessary background on the landscape of zeroth order optimization
techniques. In chapter 4, we describe our algorithm and, in chapter 5, present empirical evidence
demonstrating the performance of our algorithm. In chapter 6, we try to understand the work-
ings of our algorithm from a theoretical perspective and present other interesting phenomena
witnessed during our investigation. Finally, in chapter 7, we conclude the discussion with some
future directions of interest.
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Chapter 2

Background

At a high level, zeroth-order optimization can be viewed as a more challenging version of the
multi-armed bandits problem [38]. In its simplest formulation, the bandit problem consists of a
set of k ‘arms’ A = {a1, . . . , ak} over some domain D. Metaphorically pulling each arm yields
some real result, the crucial detail here being that the value associated with each arm is initially
unknown. At each time step t = 1, 2, . . . , the player chooses one of the k available arms and
receives some reward. The goal of the player is two-fold: (1) identifying the arm that provides
the greatest reward, and (2) maximizing the cumulative rewards over the duration of this game.
Oftentimes, the problem is defined such that a budget of T is set over which to accumulate as
much reward as possible.

Zeroth-order optimization relates to the multi-armed bandits problem in that there is now an
infinite number of arms, each representative of a point in d-dimensional space [39]. Let us
express our goal in zeroth-order optimization more formally: we want to minimize some function
f over a prescribed set X ⊆ Rd

f ∗ = min
x∈X

f(x),

when we are limited in the ways in which we can interact with the function. In particular, we
only have access to f via point evaluations i.e., by querying a black-box (or zeroth-order) oracle.
This, in turn, outputs a potentially noisy estimate of the function when queried at any x ∈ X

y = f(x) + ξ,

where ξ is assumed to be a mean-zero random variable. Our goal is to find an approximate
minimizer of f while making as few oracle queries as possible. In other words, a zeroth-order
optimization algorithm performs a sequence of queries x1, x2, . . . , xT and uses the acquired in-
formation to output some point x̂T as a potential minimizer of f . Once again, notice the analogs
to the multi-armed bandits problem, with the main difference being that the arms there are finite
and discrete.
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In line with the aforementioned goals in a bandits problem, the performance of a zeroth-order
optimization technique is typically measured using one of the following optimality criteria

f(x̂T )− f ∗ (Simple Regret),

1

T

T∑
t=1

(f(xt)− f ∗) (Cumulative Regret).

The difference in these criteria is highlighted by a concern common in most online decision-
making problems: whether to make the best decision given current information (exploitation), or
gather more information (exploration). In our case, this dilemma manifests in the following way:
do we make our next query at the best point seen thus far or do we search for some previously
unseen point to visit? This is a trade off that every zeroth-order optimization technique needs to
balance – determined by whether the focus is on short-term or long-term rewards, and the levels
of acceptable risk.
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Chapter 3

Prior Work

Zeroth-order optimization is not a new field of study. Owing to its importance, the subject has
received a lot of attention from various research communities and, over the years, numerous tech-
niques have been proposed towards solving this problem. Let us briefly examine some popular
algorithms used. As previously mentioned, bandit optimization is closely related to zeroth-order
optimization, so we discuss here algorithms traditionally developed for the multi-armed ban-
dits problem that have served as the basis for associated zeroth-order optimization algorithms –
which boils down to adapting these algorithms to an infinite number of arms.

3.1 Bandit Optimization Techniques
Upper Confidence Bound (UCB): The mechanics of the Upper Confidence Bound-based algo-
rithm for bandit optimization are simple: at each time step, we choose the arm that yielded the
highest empirical reward up to that point, plus an additional term that is inversely proportional to
the number of times that specific arm was pulled [40]. Hence, the UCB algorithm aims to vary
the exploration-exploitation balance based on knowledge it gathers at each time step of operation.

For arms {a1, . . . , ak} during t = 1, . . . , T , let

• Qt(a) be the estimated value associated with arm a at time step t.

• Nt(a) be the number of times arm a has been pulled prior to time step t.

The first term in the optimization objective of the UCB algorithm controls its exploitation in-
centive. It biases the algorithm towards arms that have yielded the highest estimated reward up
to that point (usually, this is the average reward across all Nt(a) times that a was previously
selected).

Intuitively, the additional term in the objective helps to avoid pulling the same arm without
exploring the other available arms first. Therefore, the hyperparameter c is a confidence value
that controls the level of exploration performed in this algorithm. The expected cumulative regret
of this simple UCB algorithm is logarithmic in T , the total budget [41].
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Algorithm 1: Upper Confidence Bound
Input: Hyperparameter c.

1 for t = 0, 1, 2, . . . , T do
2 Execute

at = argmax
a

[
Qt(a) + c

√
log t

Nt(a)

]

and observe the reward rt.
3 Update Qt+1(at) using rt.
4 end

Extending this finite-arm UCB algorithm to the infinite-arm setting (which is equivalent to a
zeroth-order optimization problem) may simply involve, for each time step, randomly sampling
the domain (X ) k times and running the algorithm as shown [42]. Hence, the only difference is
that the decision set under consideration changes for every iteration. It is important to note that
this only describes one way to adapt the bandit version of this algorithm to a continuous, infinite
setting: there are many possible approaches to do the same [43].

Thompson Sampling: Also referred to as the Bayesian bandits algorithm, Thompson sampling
is another popular multi-armed bandits algorithm [44]. The main idea here is to compute a
posterior distribution of each arm being optimal given the information accumulated up to the
current time step, and then sampling an arm from this distribution to pull. More generally, what
this means is that we are considering distributions π over the space of parameters that completely
define a problem instance θ ∈ Θ. In the multi-armed bandits case, θ could encode the raw reward
values for a set of arms, or even their distributions (as is the case for stochastic bandits).

Algorithm 2: Thompson Sampling
Input: Prior distribution over models, π0 : θ ∈ Θ → [0, 1].

1 for t = 0, 1, 2, . . . , T do
2 Sample model θt ∼ πt.
3 Compute at = argmaxa Eθt [rt|at = a].
4 Select arm at and observe reward rt.
5 Update posterior distribution πt+1 using (at, rt).
6 end

Of course, the tricky part in the case of multi-armed bandits (and accordingly, zeroth-order op-
timization) is that we lack access to the actual posterior distribution πt given the observed data
as of time t. The assumption made in constructing an approximate posterior (as done in the al-
gorithm above) is that, if the approximate is close to the actual, then Thompson sampling would
yield near-optimal cumulative regret. In particular, it has been shown that Thompson sampling
can provide logarithmic regret with respect to the number of rounds, T [45].
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However, it is worth noting that the forenamed assumption may not necessarily hold for some
problems. For example, it could be the case that exploring a sub-optimal arm could provide
useful insights about the nature of the other arms [46]. A downside of Thompson sampling
is that it would never select such actions [47]. Moreover, Thompson sampling does not also
account for the budget of the algorithm T in balancing exploration versus exploitation unless
specific changes are made [48].

One way of extending this Thompson sampling technique from bandit optimization to zeroth-
order optimization is identical to the prescription outlined for the UCB-style algorithm above
i.e., randomly sampling the domain X to establish a new set of arms in each round. Note again
that this is but one, very simple way of performing this extension.

Gradient Descent-based Techniques: Works in this category hope to leverage (stochastic) gra-
dient descent by computing an approximation of the gradient using point evaluations from the
black box. While reasonable, the downside of such approaches is that, in the stochastic setting,
they assume that the expected payoffs are a linear or convex function of the arm chosen – some-
thing necessary for gradient descent to provide good performance – which can be restrictive.
Assuming linearity, it has been shown that we can obtain a regret bound of O(

√
T ) [49] while

convexity yields us O(T 5/6) [50].

3.2 Model-based Techniques
Let us shift our attention back to the zeroth-order optimization paradigm, and model-based al-
gorithms in particular. As mentioned in chapter 1, these techniques can be subdivided into ones
that make structural assumptions about the unknown black-box function, and ones that do not.

Given a problem of dimensionality d with T rounds of operation, we can summarize the upper
bounds on regret achieved by the techniques making structural assumptions as follows:

Assumption Regret Bound

Linear O
(√

d
T

)
or O

(√
d2

T

)
[51, 52, 53]

Quadratic O

(√
d2

T

)
[27]

Strongly Convex + Smooth O

(√
d2

T

)
[27]

Strongly Convex O

(
min

(
4

√
d2

T
,
√

d34

T

))
[28, 29]

Convex O

(
min

(
3

√
d2

T
,
√

d34

T

))
[25]

Table 3.1: A summary of regret bounds provided by techniques imposing cer-
tain structures to the underlying function f .

On the flip side, techniques that make no structural assumptions about f other than Lipschitz
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continuity have been proven to provide regret bounds in O(T−γ) for γ = d+1
d+2

[30]. Bayesian
optimization techniques like Gaussian processes provide regret bounds in O(d log T ) (assuming
linear kernels) [32].

3.3 Neural Network-based Techniques
Neural networks are able to model complex functions in high-dimensional spaces, hence can be
used as surrogates for the unknown function f . There exist a variety of neural-network based
techniques available to tackle the zeroth-order optimization problem. The ones of interest to our
work are discussed in more detail below.

One particular work empirically compared the various Thompson sampling-based approaches
using deep Bayesian neural networks [54]. They compare a variety of models including linear
(again, where the assumption is that the expected value of the stochastic rewards is an unknown
linear function of arm choice), neural linear (neural networks with a linear Bayesian layer at the
bottom), variational inference for parameter posterior estimation, dropout, Markov chain Monte
Carlo sampling using stochastic gradient descent (for posterior parameter sampling), bootstrap,
parameter noise injection, and Gaussian processes. Overall, they found that linear and neural
linear approaches performed the best under this bandits setting due to their ability to compute
informative uncertainty measures. Another interesting observation noted in this work is that a
number of approaches require careful tuning of associated hyperparameters in order to yield the
best performance. This is a concern we will revisit in this work as well.

A simple approximation of Thompson sampling is ensemble sampling [55]; here, a collection of
neural network models is maintained and, during each iteration, a network is sampled uniformly
at random from this set and its minimizer chosen as the next point of query. The obtained
information is then used to update all models in said collection. However, this is could become a
very expensive endeavor in high-dimensional settings, more so if a large variety of networks are
to be considered as part of the ensemble [56].

The connection between wide neural networks and Gaussian processes [57, 58] has also inspired
a number of neural network-focused approaches relying on the idea of a neural tangent kernel
(NTK) [59]. At a high level, the NTK describes the evolution of deep neural network during
training by gradient descent. A key result derived from its application is that wide enough net-
works converge to a global minimum when trained to minimize empirical risk [60]. As a result,
these approaches for zeroth-order optimization are principled and provide theoretical bounds on
their regret.

NeuralUCB is a UCB-based approach that relies on infinitely wide neural networks [61]. It can
also be extended to a batched setting, where a number of points are queried during a single round
before updating the decision policy [62]. NeuralTS is, analogously, a Thompson sampling-based
approach that utilizes infinitely wide networks [63]. What differentiates NeuralTS from standard
Thompson sampling algorithms is that the posterior is with respect to reward outputs from the
neural network rather than the weight parameters themselves. Another UCB-based approach
using neural networks computes confidence bounds only for the final linear layer rather than for
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the whole parameter space [64]. BORE is another recent Bayesian optimization strategy that
reformulates the expected improvement acquisition function as density ratio estimation and uses
neural networks to solve that problem [65].

Regardless of the wealth of techniques evidently available for solving zeroth-order optimization
problems, most algorithms exhibit one or more of the following downsides:

1. They make restrictive structural assumptions about the objective function f such as linear-
ity or convexity, which often do not hold in practice.

2. They are computationally expensive and do not scale well to high-dimensional problems.

3. They make too many queries to the zeroth-order oracle, which can prove to be prohibitive
in applications where each function evaluation is expensive.

Our focus in this work is on neural network-based techniques because neural networks have been
proven to be good at representation learning and can easily be applied to a variety of problems,
from neural architecture search [66] to protein structure discovery [67]. In contrast, Bayesian
techniques like Gaussian process-based UCB cannot be readily adapted to such domains as they
involve the specification of an appropriate kernel function, which typically requires substantial
domain knowledge [68].

11



12



Chapter 4

Methodology

We begin our discussion by considering the noiseless setting i.e., querying the black-box oracle
returns a deterministic result that can be relied upon to be accurate of the underlying function,
and querying the black-box at the same point twice yields the same value. We also assume that T
is known beforehand. In tackling the zeroth-order optimization problem, we propose a simple yet
powerful algorithm that yields strong empirical results and provides some worthwhile theoretical
insights.

4.1 The Neural Greedy Algorithm

4.1.1 Notation and Setup
We begin by introducing notation to describe the neural network that is trained at each iteration
of our algorithm. Let d represent the input dimensions for examples, Dt ⊆ Rd × R denote the
training set for the neural network of size n at time step t, with Xt = {xi : (xi, yi) ∈ Dt, ∀i ∈
{1, . . . , n}} and Yt = {yi : (xi, yi) ∈ Dt, ∀i ∈ {1, . . . , n}} denoting the inputs and labels. For
our problem, Xt represents the points at which the zeroth-order oracle has been queried up and
until time t, and Yt the associated return values.

Consider a fully-connected feed-forward neural network with L hidden layers. ml for all l ∈
{0, . . . , L+1} represents the width of each layer, with m0 = d for the input layer and mL+1 = 1
for the output layer (recall that our unknown objective function is of the form f : Rd → R). For
each x ∈ Xt, we use hl

t(x) and αl
t(x) to represent the pre- and post-activation functions at layer

l for input x.

We can fully define our feed-forward neural network during round t of the zeroth-order opti-
mization algorithm with the following recurrence relation

α0
t = x,

hl
t = W l

tα
l−1 + blt,

αl
t = ϕ(hl

t)

and

{
W l

t∥i,j = σ√
ml−1

ωl
t∥i,j,

blt∥i,j = βl
t∥j

∀l ∈ {1, . . . , L}
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for some activation function ϕ, W l
t ∈ Rml−1×ml and blt ∈ Rml are the weights and biases,

ωl
t∥i,j and βl

t∥j are trainable variables that are drawn i.i.d. from a standard Gaussian distribu-
tion ωl

t∥i,j, β
l
t∥j ∼ N (0, 1) at initialization, and σ2 is the weight variance.

Note that σ2 is not a learnable parameter, but rather a hyperparameter used to configure our
algorithm – we will revisit the weight variance parameter and understand its significance in the
context of our problem. Overall, this parametrization is referred to as the NTK parametrization
[69]; what differentiates it from standard parametrization is that, not only does it normalize the
forward dynamics of the network, it also normalizes the backward dynamics as well.

We define θlt ≡ vec({W l
t , b

l
t}), a vector of all parameters for layer l in the network. Therefore,

θt = vec
(
∪L+1

l=1 θ
l
t

)
indicates all network parameters, with θt,t′ indicating network parameters

during step t′ of training the neural network. The final output of the neural network is f(x; θt) =
WL+1

t αL
t + bL+1

t . During training, we are interested in learning a θt that minimizes square loss
L(θt,Dt) =

∑n
i=1 (f(xi; θt)− yi)

2.

4.1.2 Algorithm Definition
Our algorithm consists of two components: (1) an outer runner that controls the algorithm
across all T rounds of operation, and (2) an inner procedure conducted for each time step
t ∈ {1, . . . , T}. Based on the value of T , the algorithm allocates the first te rounds for pure
exploration i.e., the points of query are sampled at random from the domain of the function using
Latin hypercube sampling: a statistical method that generates a near-random set of samples from
a multidimensional domain [70].

Algorithm 3: Neural Greedy
Input: Hyperparameter σ2, budget T .

1 Initialize D0 = Ø.
2 Determine te using T .
3 for t = 1, 2, . . . te do
4 Sample xt randomly from the domain.
5 Query f at xt and obtain yt.
6 Update Dt = Dt−1 ∪ {(xt, yt)}.
7 end
8 for t = te, te+1, . . . , T do
9 Initialize θt,0.

10 Train neural network θt on Dt−1.
11 Find xt = argminx f(x; θt).
12 Query f at xt to obtain yt.
13 Update Dt = Dt−1 ∪ {(xt, yt)}.
14 end

Note that our algorithm as presented is in its more general form. There are a lot of hyperpa-
rameters and architectural decisions that need to be made once it comes down to real-world
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application. Considerations common to all neural network-based algorithms apply here as well:
the number of hidden layers, the width of the layers, the learning rate, the optimization technique
to use during training, the number of epochs, amongst others 1.

4.2 Motivation
Let us try to motivate why and how we landed on the algorithm defined above. In doing so, let
us begin by understanding a popular class of optimization techniques used to solve zeroth-order
optimization problems, Bayesian optimization [71]. Any Bayesian optimization algorithm con-
sists of two main components: a Bayesian statistical model for modeling the black-box function
f , and an acquisition function for deciding where to query the oracle next. The statistical model
at play here is a Gaussian process: a non-parametric supervised learning method that can be used
to a learn a posterior distribution over all possible functions that fit the data.

Algorithm 4: Generic Bayesian Optimization
Place a Gaussian process prior on f .
Observe f at te points according to an initial exploration experimental design.
Set t = te.
while te ≤ T do

Update the posterior probability distribution of f using all available data.
Compute the acquisition function using the current posterior distribution.
Let xt be a minimizer of the acquisition function over x.
Observe yt = f(xt).
Increment t.

end
Output: Either the point evaluated with the largest f(x), or the point with the largest

posterior mean.

Our goal with algorithm 3 was to simulate posterior sampling as is the case in Gaussian processes,
but now using neural networks. The reason for attempting this is straightforward: as is the case
for any Bayesian technique, we want to make the best query using data collected from prior
rounds and update our beliefs using data yielded in the current round.

In order to understand the correlation, let us understand how Thompson sampling works for a
Gaussian process. Let us consider the basic setting of optimizing a one-dimensional function
under the zeroth-order regime, as shown in Figure 4.1.

We begin by querying the black-box oracle at random points within the prescribed domain to gain
a rough idea of the function’s ‘shape’, creating a data set similar to that depicted in Figure 4.2.

A Gaussian process can then be fit to the data collected. The uncertainty associated with the
resulting approximation manifests itself as a confidence band spread over the mean fit. This is
represented by the posterior distribution seen in Figure 4.3.

1The specific configurations we used during in our implementation are discussed in Appendix A.
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Figure 4.1: A plot of the Ackley function cut to one dimension.

Figure 4.2: A plot of random queries to an oracle with the Ackley function as
its objective.

Figure 4.3: A plot showing the Gaussian process fit to the observations seen.

We can draw samples from this posterior, which are essentially candidate approximations to f .
These are plotted in Figure 4.2.
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Figure 4.4: A plot showing samples drawn from the posterior distribution of
the Gaussian process model.

This is where Thompson sampling comes in. What it does is draw a random sample (a function)
from the posterior distribution, which is then greedily minimized in order to determine the next
point of query. UCB with Gaussian processes is similar, with the only difference being how the
acquisition function is computed from the prior and how the next point of query is selected [72].

Notice the similarities between this technique and our method: instead of posterior sampling
from a Gaussian process fit, what we are doing to emulating the same by fitting a neural net-
work. They are multiple possible neural networks that can fit the data – similar to how there are
multiple possible samples that can be drawn from the posterior – and the one that ultimately is
yielded from training is analogous to the function sample that is finally drawn from that posterior
distribution. The neural network analog for a one dimensional problem is shown in Figure 4.5.

Figure 4.5: Multiple neural networks fit to queries made to a black-box oracle
for a one-dimensional function.

By leveraging neural networks, we hope to reap two main benefits: (1) we avoid the task of
defining a prior, as is required for Bayesian optimization, which often demands extensive domain
knowledge for good performance, and (2) Gaussian processes are known to perform poorly in
high dimensional settings [73].
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4.3 Tuning σ2

A hyperparameter required of the Neural Greedy algorithm is σ2, which denotes the initial-
ization variance for the weight parameters of the neural network. An interesting observation is
that σ2 has a bearing on the ‘smoothness’ of the neural network trained. We observe that, in
our implementation, increasing the variance lead to less smooth solutions. We discuss possible
explanations for why this is the case in chapter 6.

The value of σ2, consequently, biases the algorithm towards a certain set of solutions within the
class of all possible neural network fits. In turn, this affects the quality of the approximation of
f made by the neural network. Therefore, tuning σ2 can be an consequential part of running
algorithm 3. In our experiments, we selected the initialization variance by simple grid search
over a reasonable range and granularity of values.
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Chapter 5

Empirical Results

In this chapter, we focus on evaluating the empirical performance of the Neural Greedy al-
gorithm. The baseline algorithm we use for comparison here is Gaussian processes with the
expected improvement criterion for optimizing the acquisition function, GP-EI [74]. This was
chosen as our baseline because (1) it has been shown to be more well-behaved than alternatives
like Gaussian processes with the probability of improvement criterion, and (2) it does not require
any tuning parameters, unlike Gaussian processes with UCB [5, 72].

We run the two algorithms on a set of synthetic functions that are commonly used in black-box
optimization bench marking and competitions [75, 76]. The functions to test on were chosen
such that they vary in dimensionality, modality, smoothness, and structure 1. The budget T for
each function was set – for the sake of experimentation – based on its complexity: black-box
functions of higher dimensions and complexity were allocated more rounds.

Table 5.1 shows the results of our investigation assuming noiseless black-box queries, and the
graphs in Figure 5.1 depict the rates of convergence of each algorithm across the different syn-
thetic functions. In both cases, the data was gathered and averaged across ten independent runs
2.

Table 5.2 and Figure 5.2 contain the same information as previously mentioned, but now with
a noisy black-box oracle for each of the synthetic functions. Noise levels can widely vary in
practice: some problems may have very low noise (such as mechanical structure design problems
utilizing accurate simulators), while others can exhibit very high amounts of noise (for example,
A/B testing new features in internet services). With these experiments, we target the former
setting and, correspondingly, limit the standard deviation of the Gaussian noise added to be not
more than 10% of f ’s range.

1More details regarding the synthetic functions used can be found in Appendix B.
2The wall-clock times were determined while running on an Intel® Xeon® Silver 4216 CPU clocked at 2.10

GHz.
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f d T
SIMPLE REGRET CUMULATIVE REGRET WALL-CLOCK TIME

GP-EI Neural Greedy GP-EI Neural Greedy GP-EI Neural Greedy

Branin-Hoo 2 50 0.052 0.130 13.567 17.116 84 955
Schwefel 3 100 93.949 109.971 379.568 281.508 415 2769
Hartmann 6 200 0.051 0.121 2.276 1.762 2017 6152

Styblinski-Tang 10 200 94.919 74.224 263.186 358.300 2132 6336
Levy 15 200 9.945 4.111 73.444 101.974 2251 6503

Ackley 20 200 16.741 13.840 18.349 17.399 2317 6936
Rosenbrock 40 500 295095.330 143254.722 1320021.921 1630700.099 15698 29298

Rastrigin 100 1000 1362.198 1588.264 1551.339 1998.529 87037 103067

Table 5.1: A summary of the results achieved by our algorithm against base-
lines across a variety of synthetic functions assuming a noiseless oracle.
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((a)) Branin-Hoo (d = 2) ((b)) Schwefel (d = 3)

((c)) Hartmann (d = 6) ((d)) Styblinski-Tang (d = 10)

((e)) Levy (d = 15) ((f)) Ackley (d = 20)

((g)) Rosenbrock (d = 40) ((h)) Rastrigin (d = 100)

Figure 5.1: Plots indicating the minimum values achieved by the two algo-
rithms across the duration of operation on the synthetic functions (with noise-
less oracles), as an indication of the speed of convergence.
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f d T
Simple Regret Cumulative Regret Wall-clock Time

GP-EI Neural Greedy GP-EI Neural Greedy GP-EI Neural Greedy

Branin-Hoo 2 50 11.944 13.005 15.962 17.766 92 977
Schwefel 3 100 97.419 110.451 345.710 266.438 427 2874
Hartmann 6 200 0.303 0.458 2.460 2.579 2162 6536

Styblinski-Tang 10 200 97.436 78.119 278.407 378.668 2262 6647
Levy 15 200 9.991 0.270 80.117 98.374 2357 6812

Ackley 20 200 17.268 17.742 19.575 19.910 2449 7342
Rosenbrock 40 500 306080.870 138696.423 1312985.224 1731204.671 16816 32290

Rastrigin 100 1000 1349.849 1611.106 1554.041 1997.395 88038 101938

Table 5.2: A summary of the results achieved by our algorithm against base-
lines across a variety of synthetic functions assuming a noisy oracle.
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((a)) Branin-Hoo (d = 2) ((b)) Schwefel (d = 3)

((c)) Hartmann (d = 6) ((d)) Styblinski-Tang (d = 10)

((e)) Levy (d = 15) ((f)) Ackley (d = 20)

((g)) Rosenbrock (d = 40) ((h)) Rastrigin (d = 100)

Figure 5.2: Plots indicating the minimum values achieved by the two algo-
rithms across the duration of operation on the synthetic functions (with noisy
oracles), as an indication of the speed of convergence.
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Based on the results shown, we make the following observations. In general, as the dimensional-
ity of the problem increases, Neural Greedy tends to dominate GP-EI in terms of simple regret
- a phenomenon that is more clearly witnessed in the noiseless setting. An evident shortcoming
that appears to be limiting the performance of our technique is that it bears the risk of falling into
a local minima and staying there. This is especially apparent in the plots for the Rastrigin func-
tion with both noiseless and noisy black-box oracles; while the function does have high modality,
GP-EI is still able to continue pursuing a better minima over the course of the experiment.

One possible solution to investigate here could be to add noise to the gradients during neural
network training, in order to increase the likelihood of the algorithm escaping such local minima
and providing a new network fit that encourages more exploration. Techniques like Stochastic
Gradient Langevin Dynamics (SGLD) may prove to be useful in this regard [77]. It could also
well be that the choice of σ2 used for these particular experiments was sub-optimal (please refer
to chapter 6 where we elaborate on the significance of this hyperparameter).

When it comes to cumulative regret, the experiment we ran are inconclusive: while Neural
Greedy does show some potential in the noiseless case, GP-EI’s statistics appear better overall.

With respect to wall-clock time, GP-EI trumps Neural Greedy in every single instance. We
reckon that the primary cause for this severe discrepancy is that algorithm 3 requires the training
of a new neural network at every single time step. Possible solutions to alleviate this bottleneck
could be to provide a warm-start for the training process [78], and/or only training the neural
network completely at regular intervals within the overall budget (for instance, once every ten
rounds).

Nevertheless, our seemingly simple algorithm provides better-than-expected results. It is an
indicator of the power of the neural networks in the context of zeroth-order optimization, and our
experiments suggest that - with the right adjustments - even a greedy technique such as ours can
provide great performance for practical purposes.
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Chapter 6

Theoretical Insights

In this chapter, we attempt to provide an explanation for what our algorithm is doing and why it
performs the way that it does. In particular, we provide insights as to how our algorithm selects
a function fit and how that is closely related to the hyperparameter σ2, the initialization variance
for the weights of the neural network.

A reasonable question to ask based on our presentation of algorithm 3 is the following: if all
we are doing in each iteration of the neural training process is fitting to the data, why do we
not converge to a single, smooth function fit with zero training loss? What causes our algorithm
to randomly explore over a number of possible function approximations across t rounds of the
zeroth-order optimization problem?

The workings of our algorithm are closely related to the concept of implicit regularization. Gen-
erally, this describes the phenomenon whereby an optimization algorithm prefers to converge to
a certain solution (or class of solutions) in favor of the others in parameter space. When training
neural networks, there are several modeling choices made that could implicitly impose a regular-
ization effect on the final solution [79]. Our belief is that σ2 is biasing our algorithm to a certain
solution class.

Let us consider the neural network training process, with θt,0 denoting the initialized weight
parameters during some arbitrary round t of our greedy algorithm. In the overparameterized
setting, it has been shown that θt,t′ (the weight parameters of the neural network after t′ training
loops) are still quite close to θt,0 in the parameter space [80]. Consider the overparametrized,
single hidden layer networks we operate over in our implementation of Neural Greedy. When
overparameterized, it has been shown that the gradients of the individual weights and biases tend
to 0 [81]. Training still occurs, in that the network’s weights ‘collectively’ modify the solution,
with the individual parameters remaining relatively unchanged.

As σ2 explicitly has a bearing on the initialization parameters (as seen in chapter 4), this is why
the choice of its value leads to different neural network fits. Referring back to the question posed
earlier, it is σ2 that allows for this exploration across candidate neural network fits to occur across
rounds. In other words, it is the application of the σ2 hyperparameter that allow us to simulate
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Thompson sampling in Gaussian processes, as explained in chapter 4.

Let us now try to understand why exactly σ2 is controlling the nature of the neural network fit
to the training data (in our case, the point queries and results collected up to a certain point in
time). To explain this, we rely on neural network training theory for infinite width networks
i.e., networks whose widths tend to ∞ and theories surrounding NTKs [59]. The reason for
assuming infinitely wide networks is that the characteristics of finite width neural networks are
hard to study [82]. Hence, suppose we have an infinitely wide network: it has been shown that
gradient of the network with respect to an example x, ∇θfθ(x), remains almost constant over
the training process. This has an impact on the training dynamics on the neural network and can
be used to characterize fθt,t′ (x) after t′ training steps. In this setting, we can compute the NTK
associated with the network as Θ(x, x′) = ∇θfθ(x)

⊤∇θfθ(x).

Another phenomenon of interest here is the following: suppose we randomly initialize the
weights of an infinitely wide neural network with no training performed after. It has been proven
that this network is a sample from a Gaussian process prior [57], and we can calculate the kernel
associated with this fit: K(x, x′). This is referred to as the neural network Gaussian process
(NNGP) kernel.

We return to our problem of understanding the variance in neural network fits during a round of
the Neural Greedy algorithm. It has been proven that the distribution over all possible solutions
can be characterized as a Gaussian process with 1

mean µ(Xtest) = Θ(Xtest,Xt)Θ
−1(I − e−ηΘt)Yt, and

covariance Σ(Xtest,Xtest) = K(Xtest,Xtest) + Θ(Xtest,Xt)Θ
−1(I − e−ηΘt)Θ−1Θ(Xt,Xtest)

−
(
Θ(Xtest,Xt)Θ

−1(I − e−ηΘt)K(Xt,Xtest) + h.c.
)
,

where Xtest refers to the test set, Xt is our training examples at time t, and η is the learning rate
of the training process [69]. This assumes that we are working in an overparametrized setting,
which our implementation does. What this means is that the variance of the implicit Gaussian
process is dependent on the NNGP kernel which, in turn, depends on the initialization variance
of the weights of the network, σ2. Therefore, this explains why σ2 has an impact on the variance
of our solution.

In conclusion, we observe that (1) imposing an initialization variance σ2 is what causes the
algorithm to explore a variety of neural network fits, (2) the value of σ2 decides the variance of
solutions (neural network function fits) possible during an iteration of our algorithm, and (3) the
fact that gradient descent in the overparametrized setting leads to solutions that are close to the
vicinity of the initial parameters θt,0 implies that the final, post-training neural network inherits
the smoothness of the initialization, which is determined by σ2.

1where ‘h.c.’ refers to the Hermitian conjugate.

26



Chapter 7

Future Work

There are a lot of interesting directions for research that stem from the work described in this the-
sis. A first step would be to establish explicit regret bounds for the Neural Greedy algorithm.
This would allow ease of comparison with other baselines but, based on the empirical perfor-
mance portrayed by our technique, our inclination is that we need to develop more adaptive
measures of complexity in zeroth-order optimization. As it stands, existing complexity measures
(like Eluder dimension [83]) used to bound the regret of zeroth-order optimization may not fully
explain the behavior of our algorithm.

In terms of empirical investigations, we are yet to understand how our algorithm behaves when
training using a multiple hidden layer neural network, as our implementation was restricted to
a single hidden layer. Deeper networks may be harder to explain the behavior of, but for a
large class of piece-wise smooth functions, the number of units needed by a shallow network
to approximate that function to a certain degree is exponentially larger than the corresponding
number of units for a deeper network [84].

Furthermore, while the synthetic functions we used provide a general sense of performance, it
is essential that we apply our algorithm to higher dimensional problems and even real-world
experiments. That would allow us to understand how generalizable our algorithm is.

Another important problem to tackle in the future would be to propose a method for automatically
tuning σ2, the initialization variance of the neural network parameters. We saw in chapter 6 that
this hyperparameter has a great impact on the nature of the neural network fit and how well it
serves as a surrogate for the black-box function. In our implementation, σ2 was picked using a
basic grid search, which can be slow and inefficient once we move to more complicated zeroth-
order optimization problems. A simple, heuristic-based approach could be to find a candidate
σ2 using cross-validation, then incrementing it by some constant - as mentioned in chapter 4,
higher initialization variance led to less smooth function fits. This could increase the amount of
exploration performed by our algorithm.

Another natural consideration for the question of tuning σ2 could be to employ some online
learning algorithms. For instance, we could fit multiple neural networks with different initializa-
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tion variances, each drawn from some intervals of values, and then run an Exp3-style algorithm
on top of this to determine the best σ2 overall: a meta-bandits problem is solved before our tech-
nique is run in earnest. Techniques like these have been studied and provide local guarantees
that may be worth exploiting [85]. Another alternative could be to adapt estimations commonly
utilized in Gaussian process regression that provide adequate theoretical guarantees [86].
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Appendix A

Implementation Details

As mentioned in chapter 4, there are several implementation decisions to be made in running the
proposed algorithm. For our particular implementation that was used for the experimental results
shown above, the set of configurations is as follows 1. The number of hidden layers was set at 1,
as we saw no added benefit of a multi layer network in terms of regret, and single layer networks
proved to be expressive enough for our purposes [87].

The width of the network was set at 5000 – a value much larger than the number of observa-
tions n used to fit the neural network in all our experiments. It has been shown that shallow,
overparametrized neural networks have the capacity to fit the training data with zero error [88];
a neural network is deemed ‘overparametrized’ if the number of observations being used to
perform training are fewer than the number of parameters in the model. Consequently, no regu-
larization term was placed as overfitting was not a concern.

In terms of training the neural network, the number of epochs was set at 5000 – a relatively high
number to account for high dimensional problems that may require more compute in order to
obtain better fits. The optimizer used in the training process was Adam [89], a popular technique
that adaptively adjusts the learning rate of training and employs momentum. Stochastic gradient
descent was also explored as an alternative, but no significant difference were witnessed in the
context of our experiment set. The learning rate was initially set to 0.001.

Another important choice to make is regarding to how to minimize the trained neural network in
order to determine the next point of query for the black-box oracle (optimizing the acquisition
function). A simple method could be to be randomly sample a number of points in the domain of
the function, use the neural network to obtain corresponding estimates, and pick the point whose
query yielded the minimum value. While this may be efficient, it is certainly not principled.
Alternatives to this include COBYLA [90], L-BFGS-B [91], and consensus-based optimization
[92]. The optimization technique we settled on particle-based gradient descent due to its global
convergence guarantees and relative efficiency [93].

1The code can be found here: https://github.com/biswajitsc/neural-bandits.
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Appendix B

Synthetic Functions

The synthetic functions used to evaluate our algorithm are commonly used to benchmark black-
box optimization techniques [94].

Function Dimensions Modes Domain Visualization

Branin-Hoo 2 3 [−5, 10]× [0, 15]

Schwefel 3 Many [−500, 500]3

Hartmann 6 6 (0, 1)6

(Continued on the next page)
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Function Dimensions Modes Domain Visualization

Styblinski-Tang 10 1 [−5, 5]5

Levy 15 1 [−10, 10]15

Ackley 20 1 [−32.8, 32.8]20

Rosenbrock 40 1 [−5, 10]40

Rastrigin 100 Many [−5.12, 5.12]100
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