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Abstract
Deep neural networks are well-known to be vul-
nerable to adversarial attacks that make tiny im-
perceptible changes to their inputs and yet lead
the networks to misclassify them. Consequently,
several recent works have proposed techniques for
learning models/neural networks that are robust
to such attacks. Most of the existing approaches
for designing robust models are designed to out-
put a single model to defend against all possible
moves of the adversary. However, a single model
usually does not have enough power to defend
against all possible adversary moves, resulting
in poor performance. In this work, we investi-
gate the effects of using a weighted ensemble
of models to see if it might be able to better de-
fend against adversarial attacks. Towards this end,
we present empirical results showing that model
ensembles created in certain ways do lead to sta-
tistically significant improvements in adversarial
robustness. In particular, the best model ensem-
ble provided approximately a 1% improvement in
accuracy when compared to the best-performing
individual model taken into consideration in these
experiments.

1. Introduction
Over the past decade or so, neural networks have evolved
into prominent tools used to conduct various machine learn-
ing tasks. While their versatility (coupled with the simplicity
of their underlying theory) makes them highly useful, most
of them are plagued by adversarial examples (Szegedy et al.,
2014). These are inputs to machine learning models that
have been slightly perturbed in a manner that causes them to
misclassified, oftentimes with a high degree of confidence.
What is even more intriguing is the fact that state-of-the-art
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deep neural networks have also been shown to be vulnerable
to these attacks (Nguyen et al., 2015) and that the presence
of these examples is not restricted to neural networks alone
- for example, they have been witnessed in Support Vector
Machines (Biggio et al., 2014).

A common solution proposed to make models somewhat
resistant to these perturbed inputs is to conduct adversarial
training (Gu & Rigazio, 2015). However, it is important to
note that no single cause has been identified to be behind
the existence of adversarial examples in machine learning
models. Research conducted into this question attributes
the phenomenon to (among others) the linearity of models,
the ’single sum’ nature of the constraints used in training a
majority of such models, and the complex relationships be-
tween the geometry of the categories (Li et al., 2020). What
this means is that a number of techniques have been pro-
posed for performing adversarial training, each approaching
the problem from a different perspective (Chakraborty et al.,
2018).

In general, these techniques present the problem of design-
ing robust models as a two-player game between a learner
and an adversary. In this game, the goal of the learner is out-
put a model which performs well against the worst possible
move of the adversary (in this case, the specific adversarial
attack being applied). Meanwhile, the goal of the adversary
is to design attacks which cause the learner to output the
worst performing model. A large number of the approaches
for training adversarially robust models can be classified as
heuristic techniques for solving this game.

Despite their popularity, these heuristic approaches come
with several drawbacks. Firstly, they often to sub-optimal
solutions and are not guaranteed to output the best possible
model that is robust to adversarial attacks (even when given
infinite compute power) (Liu et al., 2020). Moreover, these
techniques produce a single model in the hope that it is
resistant to all possible adversarial attacks. However, one
model does not have enough power to counter the set of all
moves that an adversary can make, leading to a model with
poor overall performance.
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1.1. Related Work

As aforementioned, a number of training techniques have
been proposed to realize models that are robust against
adversarial attacks. For our purposes, we will focus on the
following:

• Fast Gradient Sign Method (FGSM) (Goodfellow et al.,
2015) makes use of the gradients of the neural network
to generate adversarial examples, which are then used
to construct the training data set for a model.

• Projected Gradient Descent (PGD) (Madry et al., 2019)
presents the objective of the learner-adversary game as
a saddle-point problem consisting of a composition of
an inner maximization (of the loss across the set of all
possible perturbations) goal pursued by the adversary
and an outer minimization (of expected loss across all
possible points from the data distribution) goal sought
by the learner.

• Another approach considers a convex outer approxi-
mation optimizing for minimum worst case loss on the
set of activations that can attained via a norm-bounded
(`∞ in this case) perturbation (Wong & Kolter, 2018).
For convenience, this technique will be referred to as
‘CONVEX’ from hereon.

• Sensible adversarial training (referred to herein as
‘SENSE’) restrict adversarial perturbations so as to
not cross a Bayes decision boundary in addition to the
`∞ ε-ball constraint, which ensures that the perturba-
tion ball is specific to every single data point (Kim &
Wang, 2020).

The choice of models was deliberate. FGSM and PGD are
very popular, well-documented adversarial training tech-
niques that were among the earliest proposed. Compara-
tively, CONVEX and SENSE are much more recent ap-
proaches. We also avoided examining variants of existing
techniques - like ’PGD with Output Diversified Initializa-
tion’ (Tashiro et al., 2020) - to avoid skewing the ensemble
towards a particular type of model.

1.2. Contributions

In this project, we specifically address the second drawback
mentioned for these heuristic-based techniques. In particu-
lar, instead of outputting a single model hoping to be robust
against a plethora of adversarial attacks, we consider an
ensemble of models.

In particular, we consider models trained using the four
training techniques mentioned above on the MNIST data
set and compare their performance to ensemble models.
The ensembles, in most cases, performed better than their

individual counterparts and, on some attacks, portrayed
close to a 1% improvement in accuracy.

In addition, we also present the structure to an alternative
formulation of this problem with respect to ensembles and
potential on-line algorithms to solve them. While this has
not been experimented on yet, it provides a foundation on
which to base future directions for this work.

2. Preliminaries
Let us formally define the problem setting in adversarial
training (Suggala et al., 2019). Let Sn = {(xi, yi)}ni=1 be
the training data set, where xi ∈ Rd denotes the feature
vector of the ith data point and yi ∈ {1, 2, . . .K} denotes
its class label. The adversarial risk of a classifier fθ : Rd →
{1, 2, . . .K} is defined as:

R̂n,adv(fθ) =
1

n

n∑
i=1

[
max

z∈ρ(xi)
`0−1(fθ(z), yi)

]
.

where `0−1 is the 0/1 loss which is defined as:

`0−1(y1, y2) =

{
1, if y1 = y2

0, otherwise
.

and the mapping ρ defines a set ρ(x) ⊆ Rd for every x. The
adversary can map an unperturbed point x to any perturbed
point z ∈ ρ(x). A popular choice for ρ(x) is {z : ‖z −
x‖2 ≤ ε}. Given Sn, the goal of the learner is to learn a
classifier fθ, θ ∈ Θ with small adversarial risk R̂n,adv(fθ).
Here, {fθ, θ ∈ Θ} could be the set of all neural networks
of certain depth and width. This results in the following
objective:

min
θ∈Θ

1

n

n∑
i=1

[
max

z∈ρ(xi)
`0−1(fθ(z), yi)

]
.

Note that this optimization problem is a discrete optimiza-
tion problem, as it involves 0/1 loss. Solving such optimiza-
tion problems is often computationally intractable. Hence,
a common practice in machine learning is to replace the 0/1
loss with a convex surrogate loss function `(fθ(x), y), such
as cross-entropy loss. This results in the following training
objective:

min
θ∈Θ

1

n

n∑
i=1

[
max

z∈ρ(xi)
`(fθ(z), yi)

]
.

This objective can equivalently be written as:

min
θ∈Θ

max
z1,...,zn

1

n

n∑
i=1

`(fθ(zi), yi)

s.t. ∀i ∈ [n], zi ∈ ρ(xi). (1)

This min-max problem is also called a “two-player zero
sum game”. As prior mentioned, most popular adversarial
training techniques use heuristics to solve this game.
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Table 1. Classification accuracies of the six different models on a variety of attacks. The ’Natural’ accuracy refers to the (average) accuracy
of the model on unperturbed MNIST examples, while the ’Adversarial’ accuracy highlights the test accuracy of each model post training.

MODEL NATURAL ADVERSARIAL FGSM CW SIMBA PGD MOMENTUM BEST

PGD 98.46 93.45 92.35 94.18 98.47 93.45 92.52 92.53
FGSM 98.04 92.14 92.07 94.17 98.05 92.98 91.90 91.92
CONVEX 95.84 92.29 87.48 91.58 95.82 88.44 87.43 87.40
SENSE 98.51 94.18 94.73 95.01 98.49 95.39 95.18 94.71

ENS1 98.47 95.25 95.08 95.27 98.47 96.09 95.06 94.89
ENS2 99.02 96.57 95.78 96.78 98.97 96.58 95.87 95.79

3. Approach
We trained four models, one for each of the four training
techniques mentioned above (FGSM, PGD, CONVEX, and
SENSE), on the MNIST data set. In each case, the per-
turbations applied to the training examples were `∞ norm-
bounded with ε = 0.3. The number of attack steps was
40 and the number of epochs was 90. Moreover, the at-
tacks were untargeted, i.e. the ’adversary’ does not attempt
to misguide the model into predicting a specific class for
a given input. Given that the models were being trained
for image recognition tasks, the architecture used for the
(convolutional) neural network was LeNet5 (Lecun et al.,
1998).

Figure 1. Sample of perturbations applied to examples from the
MNIST data set via a PGD attack under the specified parameters.

These four trained models were then used as experts in the
training of the ensembles. Two ensembling process was
approached in two different ways:

• Weighted linear combination of individual model out-
puts (Clemen & Winkler, 1999), whereby each of the
ten labels (for each of the four models) has a weight
attached to it. This implies that the training process
learns forty different weights. This method will be
referred to in this article as ‘ENS1.’

• Simple weighted majority vote (Blum, 1998), whereby
each of the four models has a weight associated to

it. This implies that the training process learns four
different weights. This method will be referred to in
this article as ‘ENS2.’

What this essentially means is that ENS1 was solving for the
objective specified by Equation (2) while ENS2 was solving
Equation (3):

min
w1...wK

max
z1,...,zn

1

n

n∑
i=1

`

(
K∑
k=1

wkfθk(zi), yi

)
s.t. ∀i ∈ [n], zi ∈ ρ(xi),

∀k ∈ [K],wk ∈ R10. (2)

min
w1...wK

max
z1,...,zn

1

n

n∑
i=1

K∑
k=1

wk`(fθk(zi), yi)

s.t. ∀i ∈ [n], zi ∈ ρ(xi),

∀k ∈ [K], wk ≥ 0,

K∑
k=1

wk = 1. (3)

The ensembles were trained on a `∞ norm-bounded PGD
attack with ε = 0.3. As with the individual models, number
of attack steps was 40, the number of epochs was 90, and
the attacks were untargeted. The same architecture (LeNet5)
was used to construct the ensemble models.

4. Experiments
Once the training and testing of the six models was com-
plete, they were subjected to experiments, during which
each data point from the test set was perturbed using five
different types of evasion attacks: FGSM, PGD, Carlini-
Wagner (CW) (Carlini & Wagner, 2017), Simple Black-box
Adversarial (SimBA) (Guo et al., 2019), and Iterative Mo-
mentum (Momentum) (Dong et al., 2018).

An additional attack was also considered (called here
’BEST’). This is simply performed by applying to each
data point the attack (out of the other five) that resulted in
the greatest cross-entropy loss.
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4.1. Results

Ten rounds of experiments were performed, during which
the accuracy of the six models against the six attacks was
observed. The average values of these are shown in Table 1.

These results show that both ensembles ENS1 and ENS2
performed better than their individual counterparts across
most (if not all) measurements. Between the two ensembles,
ENS2 exhibited even better performance.

The most significant result is the fact that ENS2’s accuracy
on the BEST attack exceeded that of the best single model
(SENSE) by 1.08%. The superiority of the ensembles on
the BEST attack is a strong indication that ensembling is
likely to output more robust machine learning models than
models trained on a single attack.

5. Surprises and Lessons
The results produced by our experiments draw a lot of
follow-up questions to mind. While it does seem intuitive
that single models are likely to perform worse than the sum
of their parts, the methods used to learn the ensemble models
here are not very complicated. However, the accuracy gain
witnessed due to this form of ensembling is quite substantial
in the context of current adversarial research. Therefore, it
will be fascinating to determine the actual reasons behind
model ensembles’ performance improvements, at least in
this case.

Another surprise that we encountered was the volume of (or
rather, the lack thereof) literature on non-heuristic adversar-
ial training techniques. Given that heuristic techniques can
be provably sub-optimal - for example, PGD runs the risk
of converging to a local optimum rather than a global one -
we had expected more research to have been conducted on
techniques with stronger guarantees. It seems like the con-
venience provided by heuristic techniques (in terms of ease
of implementation and efficiency) outweighs the potential
downsides.

Personally, this experience has been beyond eye-opening. If
not for this project, I never would have grasped the sheer
scale of machine learning research being conducted in insti-
tutions around the world and, more importantly, the number
of questions that remain unanswered in this space. Adversar-
ial robustness constitutes a mere fraction of the work being
done in machine learning robustness and optimization, and
I am glad that I was able to contribute towards bringing
forth yet another unresolved question to the mix. I was also
able to better appreciate the time and effort researchers need
to dedicate towards meticulously performing the scientific
process, and I am in awe of scholars who publish papers on
a regular basis.

6. Conclusion
In this work, we attempted to overcome the shortcomings
caused by using heuristic techniques to perform adversarial
training by focusing on model ensembles. We trained four
models using existing training techniques and used them as
components in training the model ensemble. The ensem-
bles were learned in two different ways: one being simple
weighted majority and the other was weighted linear com-
bination of individual model outputs. Testing these models
on five different types of evasion attacks revealed that the
ensembles performed better (if not equally as well) when
compared to their individual models. The best ensemble
was the one formed using simple weighted majority, which
showed approximately a 1% improvement in accuracy, es-
pecially on the BEST attack.

7. Future Work
7.1. Data Sets

In our work, the only data set that we worked with during
the experiments was MNIST (due to its convenience as well
as its prevalence in literature). However, in order to further
substantiate the above results, we need to run similar experi-
ments on the CIFAR-10 and ImageNet data sets, which are
markedly larger and more complex. This may help iden-
tify any shortcomings of the proposed ensembling methods,
especially given their technical simplicity.

7.2. FTPL Approach

In section 2, we showed the conventional formulation for the
min-max game simulated during adversarial training. Here,
instead of solving the game expressed by the Equation (1),
we propose the following, more relaxed game:

min
P∈PΘ

max
z1,...,zn

1

n

n∑
i=1

Eθ∼P [`(fθ(zi), yi)]

s.t. ∀i ∈ [n], zi ∈ ρ(xi). (4)

We can design principled techniques for solving the relaxed
game in Equation (4) by relying on algorithmic tools devel-
oped in game theory.

Remark 1. Since the domain of the minimization player in
Equation (4) is much bigger than the domain of the mini-
mization player in Equation (1), one might think that Equa-
tion (4) is much harder to solve. However, it turns out that
solving Equation (4) is no harder than solving Equation (1).

A popular approach for solving Equation (4) is to rely on
online learning algorithms (Cesa-Bianchi & Lugosi, 2006).
Here, the minimization player (i.e. the learner) and the max-
imization player (i.e. the adversary) play a repeated game
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Algorithm 1 FTPL-based algorithm for Equation (4)
1: Input: parameters of uniform distribution η1, η2,

number of iterations T
2: Initialize θ0, {z0,i}i=1,...n

3: for t = 1 . . . T do
4: Compute θt, minimizer’s move, as:

(i) Generate a random vector σ from uniform dis-
tribution over hyper-cube [0, η1]D, where D is
the dimension of θ.

(ii) Solve the following problem:

θt = argmin
θ∈Θ

t−1∑
s=0

R(θ, {zs,i}ni=1)− 〈θ, σ〉 .

5: Compute {zt,i}i=1,...n, maximizer’s move, as:
6: for i = 1 . . . n do
7: (i) Generate a random vector σ from uniform dis-

tribution over hyper-cube [0, η2]d.

(ii) Solve the following problem:

zt,i = argmax
z∈ρ(xi)

t−1∑
s=0

`(fθs(z), yi) + 〈z, σ〉 .

8: end for
9: end for

10: Output: {θt}t=1...T , {zt,i}i=1,...n,t=1...T .

against each other. Both rely on online learning algorithms
to choose their actions in each round of the game with the
objective of minimizing their respective regret. Whenever
the algorithms used by both the players guarantee sub-linear
regret, it can be shown that repeated game play converges
to a Nash Equilibrium. In our work, we take this route to
solve Equation (4).

There are several online learning algorithms that the players
can rely on. Algorithm 1 presents one such algorithm for
solving Equation (4) which is obtained by making both
the players rely on Follow-the-Perturbed-Leader (FTPL)
to choose their actions (Suggala & Netrapalli, 2020). To
simplify the presentation, in Algorithm 1, we let

R(θ, {zi}ni=1) =
1

n

n∑
i=1

`(fθ(zi), yi).

In Algorithm 1, θt denotes the move of the minimization
player in tth iteration and {zt,i}ni=1 denotes the move of the
maximization player in tth iteration.

This approach - as shows - was not investigated by our
project. It provides stronger theoretical guarantees on the
(potential) performance of the ensemble. Therefore, we
believe that it will be worthwhile to run experiments in this
direction in the future. Not only will it provide another

ensembling mechanism, we also hope that it may shed more
light on the concrete reasons why ensembling improves
adversarial robustness.
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